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Note 

Spurious Solutions in Driven Cavity Calculations * 

1. INTRODUCTION 

When the steady Navier-Stokes equations are approximated by finite difference or 
finite element methods there results a coupled system of nonlinear algebraic 
equations. With appropriate treatment of the boundary conditions (and possibly some 
asymptotic approximations far from the flow region of interest) the number of 
algebraic equations and the number of unknowns is the same. Furthermore, since the 
nonlinearity in the Navier-Stokes equations is quadratic, the approximating algebraic 
equations are also quadratic (in any reasonable scheme). In the two-dimensional case 
with uniform mesh h in a domain of diameter O(1) there are essentially N* = l/h* 
unknowns and coupled quadratic equations. Now a basic result in algebraic geometry 
(Bezout’s theorem [7, pp. 171-1731) assures us that this algebraic system has 2N2 
solutions, although some minor difficulties, i.e., “common intersection components,” 
must be eliminated or else there can be manifolds of solutions. If the flow problem of 
interest has a unique solution, we must hope that one of these 2N2 numerical solutions 
is a close approximation to it and that all of the others are spurious. This cursory 
account suggests that most of the numerical solutions are spurious! 

Fortunately most of the “numerical” solutions are also complex, so real 
computations do not usually reveal them. Furthermore, solution procedures using 
continuation from known physical states may avoid them. But this is not always the 
case as we show in this note. Indeed even time marching schemes may lead to 
spurious steady states. Our results have revealed that this is particularly so when 
upstream differencing has been used in the driven cavity problem. 

Unfortunately there is at present no good theory to determine when a solution of 
the approximating problem is spurious and when it is “legitimate.” Indeed this 
imposes a severe burden on the computational fluid dynamicist to make additional 
tests on his results which will add weight to his assertion of their legitimacy. These 
tests may aflirm known physical or mathematical properties of the flow or else they 
may assure known approximation properties of the numerical method (i.e., A*- 
truncation expansion, etc.). The development of tests for legitimacy is an important 
and, it is hoped, a growing area which we do not study here in any detail. 

We shall exhibit spurious solutions of centered difference approximations to the 
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driven cavity problem. In addition we have found essentially these solutions reported 
in at least four papers; in only one case were they identified as being “unphysical.” 

Spurious solutions of Burgers’ equations have been studied and computed in 
[ 10, 151. For some channel flows they are reported in [ 161. A theory assuring the 
absence of spurious numerical solutions for some difference methods and some 
equations has been developed in [3]. It is not applicable, however, to the present class 
of problems. Other very special studies of spurious solutions for elliptic equations 
with special nonlinear terms are reported in [ 1, 131. 

2. THE DRIVEN CAVITY AND APPROXIMATIONS 

The driven cavity problem seeks the steady plane incompressible flow of a viscous 
fluid in a square box whose lid dives the flow by moving parallel to itself with a fixed 
speed. In terms of a stream function ly, such that the velocity (u, V) = (v,,, -w,), and 
a vorticity defined by 

w=uy-vx=A2ty, 

the dimensionless Navier-Stokes equations yield 

Re[W,,wX - v,w,] = A’o. 

(14 

(lb) 

Here the Reynolds number Re = UL/v, U is the lid speed, L is the side length and v is 
the kinematic viscosity of the fluid. On eliminating w from (lb) by using (la) we get 
the scalar fourth-order equation: 

F(ty,Re)rA4ty-Re[~,,A2~x-tyxA2~,,]=0. (4 

The boundary conditions, v = 0 on four sides, u = 0 on three sides, and u = 1 on 
the lid, imply: 

w = 0, wy = 1 on N:O<x<l, y=l; 

v = 0, lx = 0 on E:x=l, O<y<l; 

w= 0, wy = 0 on S:O<x< 1, y = 0; 
(3) 

v= 0, VI, = 0 on W:x=O, ogy<1. 

To approximate the problem (l), (3) or (2), (3) we impose a square grid of mesh 
size h = l/(J- 1) on and just exterior to the unit square R. Mesh functions {wii} and 
( wrj} are to approximate {o(xi, yj)} and { w(xi, Yj)}, where xi = ih, yj = j/z. 

Then with the usual centered difference approximations 

DzVij s (Wi+l,j- Vi-l,j)Ph~ Di~ij E (Wi,j+l - V/i,j-l)/2h 

AiWijE (Wi+l,j- 2vij + Vi-l,j)/h* + (Wi,j+l -2~ij + Wi,j-l)/h2 
(4) 
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we approximate (2) by 

Fh(tyij, Re)zAi(diylit) -Re[Diy,/di D~yl,-D~yl,d~ Diyij] =O. (5) 

These difference approximations are imposed at each interior net point (Xi, .vj) E R. 
Since fourth-order differences are employed at those net points adjacent to the 
boundary aSa of 0 (i.e., 80 = N + E + S + FV), points on 80 and points exterior to 
a but adjacent to X? also enter. The values at these points are eliminated by means 
of the boundary condition approximations; in place of (3) we use 

W(J = 09 DiWiJ= 1, on N,,: I<igJ, j=J, 

VJj = 0, D~wJj=O, on E,:i=J; O<j<J; 

Vi1 = O, Diy,,=O, on S,:O<i<J, j= 1; 
(6) 

Wlj = 0, Dztyu=O, on W,,:i= 1, O< j<J. 

On eliminating the values on 80 and those exterior to it by means of (6), we are left 
with (J - 2)’ equations in as many unknowns { wij}. 

3. SOLUTION PROCEDURES 

The reduced nonlinear difference equations of (5) are solved by means of path- 
following or continuation methods using Newton’s method and modifications of it. 
The details are spelled out in [ 141. Briefly, the exact Jacobian matrix (aF,/aw) in (5) 
is evaluated at the initial solution estimate { wr’} and is factored into the LU form by 
sparse elimination techniques (with pivoting). Then 4 or 5 iterations are performed 
with fixed matrix. If adequate convergence is not obtained, the Jacobian is 
reevaluated and factored. More than two such factorizations are never required. This 
iteration scheme is essentially 

(iF/i?~)(~) dty’“’ = -F,,(I/“), Re), 

I#“+ “(Re) = $“‘(Re) + c$‘“‘. 

The initial guess is either 

0) 

0) 

t#O’(Re + 6 Re) = I,v(~, @a) 

or else 

(8b) 

The latter is more accurate and allows larger steps in 6 Re. Even more accurate 
initial estimates (using Hermite extrapolation) have been used, see [ 141. 
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TABLE I 

J LU-factorization Back-solve 

20 0.23 0.028 
30 0.83 0.069 
40 1.90 0.130 

These continuation procedures are easily modified to compute bifurcations or limit 
point behavior by introducing arclength continuation procedures, see Keller [9]. In 
brief, we compute both {w&r)} and Re(s) in terms of some arclength-like parameter 
s. Then if yl(Re) becomes double valued, i.e., the solution path and hence Re(s) turns 
back on itself, the computations in terms of s have no difficulty. But in terms of 
increasing Re, the problem may have no solution. The extra work in arclength 
continuation is trivial (one extra back-solve for each iteration), see [9, 141. 

The computations were done on the CDC STAR-100 (i.e., CYBER 203) at Arden 
Hills, Minn. Sample CPU times in seconds, for three indicated meshes are given in 
Table I. The entire path of solutions on the 40 X 40 grid (see Fig. l), involving 79 
different values of Re in 800 Q Re < 7686, required 325 seconds of CPU time. 

The solution branches for J’= 30 and J = 40 were traced to higher Reynolds 
number and no other limit points were found. For J = 20, however, a limit point at 
high Reynolds number does occur (see Fig. 4). The wide difference between the 
course and fine grid results persists. At Re = 7686 we found w = -0.0182 at the 
vortex center on the 40 x 40 grid. By comparison, Ghia, Ghia, and Shin, using a 
256 x 256 grid, found the value -0.120 [6]. 

0.02 ‘o.~~~‘~~~~‘~~~~‘~~~~’ 
500 1000 1500 2000 
Reynolds number 

FIG. 1. Difference scheme solution branches. 
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4. RESULTS AND SPURIOUS SOLUTIONS 

We originally sought to investigate the occurrence of bifurcation and/or limit point 
behavior in the driven cavity problem. Typically in such calculations the numerical 
methods have failed to converge at some Re value for which the solution seems quite 
reasonable. Thus we suspected limit points. To find them, we planned to use very 
coarse grids, as the computations are expensive, and then to refine the grids near the 
limit points to get accurate results. We did indeed find limit points on coarse grids 
and in fact three nonunique solutions. But on refining the grids, the limit points seem 
to move off to infinity. The multiple solutions thus disappear and we retain only one 
solution. If this described behavior is correct, then we have indeed found spurious 
solutions to the difference equations. 

In more detail, we computed paths of solutions [{WV(S)}, Re(s)] on nets with 
J= 20, 30, 40, and 50. No limit points were observed for J= 20. In the other cases 
the solution paths seemed to form S-shaped curves with two limit points. These can 
be seen in Fig. 1 where we plot maxlj 1 wii(Re)] against Re for several grids. The 
values of the Reynolds numbers at which the limit points are located are given in 
Table II. We did not bother to get the second limit point for J = 50. Upon relining the 
net to J > 100 (see [ 141) all the limit points disappeared. These line grid calculations 
agree very well with other recent results [2, 171. Table II clearly suggests that 
Re,(J) -+ co as J -+ co. Indeed the growth is superlinear. 

In Figs. 2 and 3 we show streamline plots of the spurious solutions on the J = 40 
grid. Figure 2 is a spurious solution between the limit points and Fig. 3 is a solution 
on the spurious branch beyond the limit point at Re,. Solutions qualitatively very 
similar to these .have been reported in the literature [4-6, 121. Several authors have 
observed that these solutions are “nonphysical” but there has been no previous 
indication of their origin. 

Olsen and Tuann [ 1 l] used a finite element approximation of (2) with conforming 
reduced quintic elements having 18 degrees of freedom on a triangular grid with 
h = $. With Newton’s method and continuation in Re they could not obtain solutions 
beyond Re > 3450. This is reasonably close to our limit point at Re, = 3981 for 
J= 50. Our O(h2) accuracy (h = l/49) is somewhat better than their accuracy with 
quintic elements for this case. 

We also used the centered difference form of (la), (lb) but with higher order 

TABLE II 

J Re, Re2 

30 968.5 892.6 
40 1936.0 1322.0 
50 3981.0 - 



FIG. 2. Streamlines at Re = 1325, / = 40. 

FIG. 3. Streamlines at Re = 2822, J= 40. 
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FIG. 4. Vorticity versus Re for J= 20. FIG. 4. Vorticity versus Re for J= 20. 

171 

approximations of the normal derivatives in the boundary condition. Thus, for 
example, on side W we employed: 

which has O(h3) truncation error. The resulting discrete equations were solved on the 
J= 30 grid and a limit point was found at Re, = 962.5. Compared to the value 
Re, = 968.5 from our centered equations, we conclude that the spurious solutions are 
unfortunately persistent and do not change radically with “small” changes in the 
difference formulation! 

Figures 4 and 5 show the vorticity at the vortex center as a function of Re for 

FIG. 5. Vorticity versus Re for J= 40. 

581/49/l-12 
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J = 20 and 40. In both cases the vorticity takes a sudden jump to several times its 
correct value, followed by a slow decay. This is probably due to the collapse of the 
main vortex evident in Fig. 3. It might be a useful indicator of loss of accuracy. 

It would perhaps be interesting to compute all solutions of the difference equations 
as Shubin, Stephens, and Glaz [ 151 have done for a discretization of Burgers’ 
equation. Unfortunately, the 2N2 growth in the number of solutions as the mesh size is 
reduced does not allow much hope for this to be done in any realistic case. 
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